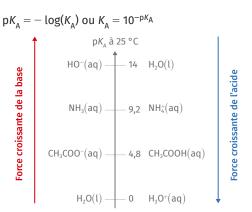
Constante d'acidité

À la réaction $AH(aq) + H_2O(I) \rightleftharpoons A^-(aq) + H_3O^+(aq)$, on associe la constante :

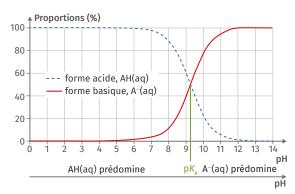
$$K_{A} = \frac{\left[H_{3}O^{+}\right]_{eq} \cdot \left[A^{-}\right]_{eq}}{\left[AH\right]_{eq} \cdot C^{\circ}}$$

La constante d'acidité du couple $\rm H_2O(l)/HO^-(aq)$, aussi appelée produit ionique de l'eau, est associée à la réaction :


$$H_2O(l) + H_2O(l) \Longrightarrow HO^-(aq) + H_3O^+(aq)$$

$$K_{e} = \frac{\left[H_{3}O^{+}\right]_{eq} \cdot \left[HO^{-}\right]_{eq}}{C^{2}}$$

Ka: produit ionique de l'eau


 $[\ddot{H}_3O^+]_{eq}$: concentration en ion oxonium (mol·L⁻¹)

[HO⁻]_{eq}: concentration en ion hydroxyde (mol·L⁻¹) c° : concentration standard égale à c° = 1 mol·L⁻¹

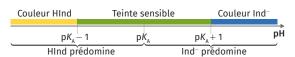

Diagramme de distribution et de prédominance

Diagramme de distribution

Diagramme de prédominance

• Indicateurs colorés

Acides aminés

Éléments essentiels de la modélisation et limites

Ce modèle permet de :

- comparer les forces relatives des acides et des bases;
- déterminer quelle est la forme du couple qui prédomine dans une solution ;
- comprendre le changement de teinte d'un indicateur coloré de pH.

Mais il ne permet pas de :

- étudier facilement les mélanges d'acides ou de bases;
- étudier les solutions autres que les solutions aqueuses;
- expliquer les pK_Δ négatifs ou supérieurs à 14;
- traiter les cas des gaz en solution.